Duality and deformations of stable Grothendieck polynomials
نویسندگان
چکیده
منابع مشابه
Stable Grothendieck Polynomials and K-theoretic Factor Sequences
We give a nonrecursive combinatorial formula for the expansion of a stable Grothendieck polynomial in the basis of stable Grothendieck polynomials for partitions. The proof is based on a generalization of the EdelmanGreene insertion algorithm. This result is applied to prove a number of formulas and properties for K-theoretic quiver polynomials and Grothendieck polynomials. In particular we for...
متن کاملRefined Dual Stable Grothendieck Polynomials and Generalized Bender-Knuth Involutions
The dual stable Grothendieck polynomials are a deformation of the Schur functions, originating in the study of the K-theory of the Grassmannian. We generalize these polynomials by introducing a countable family of additional parameters, and we prove that this generalization still defines symmetric functions. For this fact, we give two self-contained proofs, one of which constructs a family of i...
متن کاملNon-noetherian Grothendieck Duality
For any separated map f : X → Y of quasi-compact quasiseparated schemes, Rf∗ : D + qc(X) → D (Y ) has a right adjoint f . If f is proper and pseudo-coherent (e.g., finitely-presented and flat) then Duality and tor-independent Base Change hold for f . Preface This is a research summary written early in 1991, concerning results obtained by the author during a stay at MSRI in Berkeley during 1989–...
متن کاملFactorial Grothendieck Polynomials
In this paper, we study Grothendieck polynomials from a combinatorial viewpoint. We introduce the factorial Grothendieck polynomials, analogues of the factorial Schur functions and present some of their properties, and use them to produce a generalisation of a Littlewood-Richardson rule for Grothendieck polynomials.
متن کاملQuantum Grothendieck Polynomials
Quantum K-theory is a K-theoretic version of quantum cohomology, which was recently defined by Y.-P. Lee. Based on a presentation for the quantum K-theory of the classical flag variety Fln, we define and study quantum Grothendieck polynomials. We conjecture that they represent Schubert classes (i.e., the natural basis elements) in the quantum K-theory of Fln, and present strong evidence for thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2016
ISSN: 0925-9899,1572-9192
DOI: 10.1007/s10801-016-0708-4